Mathematical Foundations of Infinite-Dimensional Statistical Models

CLT for EPs:

(3.7.5) Metric and Bracketing Entropy Sufficient Conditions for the Donsker Property(3.7.6) Limit Theorems Uniform in *P* and Limit Theorem for

P-Pre-Gaussian Classes

Gyuseung Baek

February 22, 2019

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

P-Donsker Class

• Def 3.7.29 $\mathcal{F} \subset L^2(S, \mathcal{S}, P)$ satisfying

$$sup_{f\in\mathcal{F}}|f(x) - Pf| < \infty, \forall x \in \mathcal{S}$$
 (1)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is a *P*-Donsker class or that \mathcal{F} satisfies the C.L.T. for $P, \mathcal{F} \in CLT(P)$ for short, if \mathcal{F} is *P*-pre-gaussian and the *P*-empirical processes indexed by $\mathcal{F}, v_n(f) = \sqrt{n(P_n - P)(f)}, f \in \mathcal{F}$ converge in law in $I_{\infty}(\mathcal{F})$ to the Gaussian process G_p as $n \to \infty$.

• Question: Which class is a P-Donsker class?

• Note:
$$e_{n,P}^{p}(f,g) = P_{n}|f-g|^{p}$$
 for $p \ge 1$ and $e(f,g) = e_{P}(f,g) = ||f-g||_{L^{2}(P)}$.

Theorem 3.7.36

- *F*: class of m'sble ftns with condition (1) & with m'sble envelope *F* in L²(*P*)
- $\mathcal{G} := \{(f g)^2 : f, g \in \mathcal{F}\}, \ \mathcal{F}_{\delta}' := \{f g : f, g \in \mathcal{F}, ||f g||_{L^2(P)} \le \delta\}$ for all δ are all *P*-m'sble. Then, if

$$\lim_{\delta \to 0} \limsup_{n \to \infty} E\left[1 \wedge \int_0^\delta \sqrt{\log N^*(\mathcal{F}, e_{n,2}, \epsilon)} d\epsilon\right] = 0,$$
(2)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

the class \mathcal{F} is P-Donsker.

Theorem 3.7.37

- \mathcal{F} satify the P m'sbility condition in Thm 3.7.36, and assume
 - the *P*-m'sble cover *F* of \mathcal{F} is in $L^2(P)$
 - for some a > 0 there exists a function $\lambda : [0, a) \to \mathbb{R}$ integrable on [0, a) for Lebesgue measure s.t.

$$\sup_{Q} \sqrt{\log N(\mathcal{F}, L^{2}(Q), \epsilon ||F||_{L^{2}(Q)})} \leq \lambda(\epsilon), \quad 0 \leq \epsilon \leq a,$$
(3)

where the supremum is over all discrete probability measures Q on S with a finite number of atoms and rational weights on them.

Then \mathcal{F} is *P*-Donsker.

In particular, if \mathcal{F} is VC subgraph, VC type, VC hull, or a finite union or sum of such classes, and if $F \in L^2(P)$, then \mathcal{F} is *P*-Donsker.

Theorem 3.7.38

• \mathcal{F} : class of m'sble ftns on S with m'sble cover F in $L^2(P)$ and satisfying the $L^2(P)$ -bracketing condition

$$\int_{0}^{2||F||_{L^{2}(P)}} \sqrt{\log(N_{[]}(\mathcal{F}, L^{2}(P)(, \tau))} d\tau < \infty,$$

$$\tag{4}$$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Then \mathcal{F} is *P*-Donsker.

Introduction

- On what classes of functions \mathcal{F} does the empirical process hold uniformly in P?
- If *F* is *P*-Donsker, then it is *P*-pre-Gaussian. What additional conditions should a *P*-pre-Gaussian class of functions satisfy in order for it to be *P*-Donsker?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Notation

• Rademacher randomisation: $v_{n,rad} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_i f(X_i), f \in \mathcal{F}$

• Gaussian randomisation:
$$v_{n,g} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} g_i f(X_i), f \in \mathcal{F}$$

- $Z_P(f), f \in \mathcal{F}$: the centered Gaussian process with covariance $E(Z_P(f)Z_P(h)) = P(fh)$ and with intrinsic metric $e_P^2(f,h) = E(Z_P(f) - Z_P(h))^2 = P(f-h)^2$
- Let G_P be a P-bridge, then if g is standard normal independent of G_P ,

$$G_P(f) + gP(f)$$

is a version of Z_{P} . we will call it the *P*-Brownian motion or just *P*-motion.

(日) (日) (日) (日) (日) (日) (日) (日)

Uniformly Pre-Gaussian Classes

- Def 3.7.26 *F* is *P*-pre-Gaussian if the *P*-bridge process *G_P(f)*, *f* ∈ *F*, admits a version whose sample paths are all bounded and uniformly continuous for its intrinsic *L*²-distance *d*²_{*P*}(*f*,*g*) = *P*(*f* − *g*)² − (*P*(*f* − *g*))², *f*, *g* ∈ *F*.
- $\mathcal{P}(S)$: the set of all probability measures on (S, S)
- \$\mathcal{P}_f(S)\$: the set of all probability measures on \$(S,S)\$ that are discrete and have a finite number of atoms.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Uniformly Pre-Gaussian Classes

• Def 3.7.26 ${\mathcal F}$ is finitely uniformly pre-Gaussian, ${\mathcal F}\in UPG_f$ for short, if both

$$\sup_{P \in \mathcal{P}_{f}(S)} E||Z_{P}||_{\mathcal{F}} < \infty \quad and \quad \lim_{\delta \to 0} \sup_{P \in \mathcal{P}_{f}(S)} E||Z_{P}||_{\mathcal{F}_{\delta,P}'} = 0$$
 (5)

where $\mathcal{F}_{\delta,P}' = \{f - g : f, g \in \mathcal{F}, e_P(f,g) \leq \delta\}.$

 \mathcal{F} is uniformly pre-Gaussian, $\mathcal{F} \in UPG$, if the probability law of Z_P is a tight Borel measure on $I_{\infty}(\mathcal{F})$ for all $P \in \mathcal{P}_f(S)$ and \mathcal{F} satisfies the condition (5) uniformly in $\mathcal{P}(S)$.

• Ex. 3.7.42 If \mathcal{F} is a uniformly bounded VC subgraph, VC type or VC hull class, then \mathcal{F} is UPG, so, in particular, UPG_f . In general, if \mathcal{F} is uniformly bounded and $\int_{-\infty}^{\infty} \sqrt{(1-N(\mathcal{F}_{f})^{-1})} I_{f} = I_{f}$

$$\int_0^\infty \sup_Q \sqrt{\log N(\mathcal{F}, e_Q, \epsilon)} d\epsilon < \infty$$

with Q with a finite number of atoms and rational weights on them, then ${\cal F}$ is ${\it UPG}_f.$

Uniformly Donsker

• (Recall) $d_{BL(\mathcal{F})}$: bounded Lipschitz distance

$$d_{BL(\mathcal{F})} = \sup \left\{ \left| \int^{*} H(v_{n}^{P}) dP^{\mathbb{N}} - \int^{*} H(G_{P}) dP \right| \\ : H: I_{\infty}(\mathcal{F}) \to \mathbb{R} \quad \text{with} \quad ||H||_{\infty} \le 1, ||H||_{Lip} \le 1 \right\}.$$
(6)

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

F is uniform Donsker if *F* is uniformly pre-Gaussian and lim_{n→∞} sup_{P∈P(S)} d_{BL(F)}(v^P_n, G_P) = 0.

Theorem 3.7.47

- If there exists a countable class *F*₀ ⊂ *F* s.t. ∀*f* ∈ *F* is a pointwise limit of ftns in *F*₀, we say that *F* satisfies the pointwise countable approximation property (separable?).
- Thm 3.7.47 Suppose \mathcal{F} satisfies pointwise countable approximation property. Then T.F.A.E.
 - $\mathcal{F} \in UPG_f$
 - (\mathcal{F}, e_P) is uniformly totally bounded, and $\lim_{\delta \to 0} \limsup_{n} \sup_{P \in \mathcal{P}(S)} P^{\mathbb{N}}\{||v_n^P||_{\mathcal{F}'_{\delta, P}} > \epsilon\} = 0$, for all $\epsilon > 0$.
 - *F* ∈ UPG, and the same uniformity extends to *G_P*; that is, for each *P*, *G_P* admits a suitable version, and for these versions, sup_{*P*∈*P*(*S*)}*E*||*G_P*||_{*F*} < ∞ and lim_{δ→0} sup_{*P*∈*P*(*S*)}*E*||*G_P*||_{*F'*_{δ,P}} > ε} = 0

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• \mathcal{F} is uniform Donsker.

Theorem 3.7.52

• Given \mathcal{F} , define

$$\mathcal{F}'_{\epsilon,n} = \mathcal{F}'_{\epsilon^{1/2}n^{-1/4}} = \{f - g : f, g \in \mathcal{F} : P(f - g)^2 \le \epsilon n^{-1/2}\}.$$

- Thm 3.7.52 Let *P* be a probability measure on (*S*, *S*), and *F* be a uniformly bounded class of m'sble functions on *S* satisfying the countable pointwise approximation property. Then T.F.A.E.
 - \mathcal{F} is *P*-Donsker.
 - \mathcal{F} is *P*-pre-Gaussian, and

$$\lim_{\epsilon \to 0} \limsup_{n} \Pr\left\{ \left\| \sum_{i=1}^{n} \epsilon_{i} f(X_{i}) / n^{1/2} \right\|_{\mathcal{F}_{\epsilon,n}'} \geq \gamma \right\} = 0,$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

for all $\gamma > 0$.

Theorem 3.7.54

 Thm 3.7.54 Let F be a uniformly bounded class of functions satisfying the pointwise countable approximation hypothesis. If F is P-pre-Gaussian and, for some c > 0 and all τ > 0,

$$\lim_{\epsilon \to 0} \limsup_{n} \Pr^* \left\{ \frac{\log N(\mathcal{F}'_{\epsilon,n}, L^1(\mathcal{P}^n), \tau/n^{1/2})}{n^{1/2}} > c\tau \right\} = 0, \qquad (7)$$

then \mathcal{F} is *P*-Donsker.

Conversely, if \mathcal{F} is a collection of indicator funcions and is *P*-Donsker, then \mathcal{F} is *P*-pre-Gaussian and satisfies condition

Theorem 3.7.55

• Thm 3.7.54 (*P*-Donsker class of sets: necessary and sufficient conditions Let *C* be a class of functions satisfying the pointwise countable approximation property. If *C* is *P*-pre-Gaussian and

$$\frac{\log \Delta^{\mathcal{C}}(X_1, \cdots, X_n)}{n^{1/2}} \to 0 \quad \text{in outer probability,}$$
(8)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

then C is a P-Donsker class.

The converse does hold, and for general classes of functions \mathcal{F} , there are neccessary and sufficient conditions for \mathcal{F} to be a *P*-Donsker class that combines pre-Gaussianness and $e_{n,1}$ conditions.